
A Framework for Configurable Scalability
Evaluations of IoT Platforms

Fabio Muratori, Yuening Yang, Zeineb Rejiba and Andrei Marian Dan

Abstract Testing Internet of Things (IoT) platforms is essential for assessing their
reliability, scalability and potential performance issues. Such tests are particularly
challenging to set up when these IoT platforms are managing large fleets of devices.
A promising approach to address this is to use test frameworks that employ simu-
lated IoT devices to interact with the target IoT platform. This work introduces Fleet
sImulator for Scalability Tests (FIST), an extendable test framework that simulates
a variety of realistic IoT scenarios, including large fleets of devices and realistic net-
work conditions. The framework’s flexibility is demonstrated through the evaluation
of the open-source IoT platform ThingsBoard. We evaluate the capabilities of this
platform in dealing with multiple device connections and firmware update tasks.
Overall, this study contributes to the development of robust and reliable IoT plat-
forms by providing a comprehensive test framework for performance evaluations.

1 Introduction

The advent of the Internet of Things (IoT) has resulted in an increased demand for
IoT platforms that manage large fleets of devices [7, 22, 2, 18]. Selecting a suitable
IoT platform requires a prior evaluation of its functionality and performance. Robust
testing frameworks should evaluate the reliability, scalability, and performance of
IoT platforms [15, 17, 9, 21]. A testing framework serves as a structured approach
to evaluate the quality of an IoT system, encompassing a suite of tools, scripts,
scenarios, rules, and templates designed to facilitate the assessment of modern IoT
platforms.

The complexities inherent to testing and benchmarking IoT platforms and device
fleet management systems result in different challenges that need to be addressed.
An effective evaluation method is testing using a fleet of simulated devices, which
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typically requires careful management of the platform setup and the interaction with
virtual devices. As the number of configurations grows, it becomes increasingly
difficult to manage and analyze the results, particularly when attempting to replicate
the behavior of numerous devices. Network issues such as message loss, corruption,
and limited bandwidth also add another layer of complexity. Moreover, the variety
of device implementations and the absence of a standardized method for simulating
realistic device behavior adds to these challenges. Finally, the lack of a ready-made
solution for simulating a large fleet of devices presents a further hurdle in testing
the scalability and reliability of IoT platforms under various network conditions.
Existing works in this area do not address these challenges as they focus on feature
comparison at a conceptual level [15, 17, 9] or focus on comparing communication
protocols instead of IoT platforms [21].

In contrast, our work addresses these challenges by designing, developing, and
evaluating Fleet sImulator for Scalability Tests (FIST), a configurable framework to
test IoT fleet management platforms that ensures the accuracy and reliability of the
evaluation process.

2 Fleet sImulator for Scalability Tests (FIST)

To support comprehensive evaluations for IoT platforms, we propose the Fleet sIm-
ulator for Scalability Tests framework. In the following, we provide a detailed de-
scription of the FIST architecture.

Main components. The FIST framework comprises four essential components,
as depicted in Figure 1.

The Simulation Manager manages the simulation configuration and its lifecycle.
It monitors hardware resource utilization and ensures the graceful termination of
simulations, results aggregation, and environment clean-up.

The Fleet Simulator component simulates multiple virtual devices and executes
the core simulation tasks provided by the IoT platform (e.g., firmware updates). It
can be customized to accommodate a large number of simulated devices. The sim-
ulated devices can run either separately in distinct containers, achieving the share
nothing mode, or several simulated devices in each container.

The Network Environment Simulator manages various network-related behav-
iors. Configurations include ingress bandwidth limitations, outgoing message drops,
packet duplication, corruption, and delays (Section 2.2). The Network Environment
Simulator relies on a customized version of the open-source project named docker-
tc [12].

The YAML configuration is a file that specifies how to set up the framework
components and other scenario execution parameters.

In addition to these components, FIST interacts with the target IoT platform to
be evaluated. More specifically, FIST interacts with the backend that provides the
IoT services used by the simulated devices.
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Fig. 1 FIST framework main components and interactions.

Framework Layers. The FIST functionality is separated into the control and
simulation layers.

Control Layer. The control layer orchestrates the various components and man-
ages the entire simulation lifecycle, including results aggregation, termination, and
clean-up. The overall control process consists of the following steps:

Step 1: Definition of a simulation scenario via the YAML configuration file.
Leveraging this configuration, the Simulation Manager starts the backend of the
IoT platform and periodically sends requests to check the readiness of the backend
components.

Step 2: The Simulation Manager launches the Fleet Simulator by deploying mul-
tiple Docker containers, as specified in the initial YAML file. Each container is
responsible for a subset of the simulated devices. The manager also sets up the nec-
essary files for each container and ensures that all Fleet Simulator instances and
devices successfully connect to the IoT platform before starting the main simulation
task (described in Section 2.1). This guarantees that all devices are online and ready,
minimizing any warm-up period that might impact test results.

Step 3: The Network Simulator is instantiated and configured to automatically
apply the network simulation rules defined in the YAML file to all Fleet Manager
containers.

Step 4: The Simulation Manager initiates the execution of the actual simulation
task by invoking a special trigger that interacts with the IoT platform.

Step 5: During the task execution, the Simulation Manager monitors the task
status by invoking an HTTP endpoint provided by the Fleet Simulator components.
Once all Fleet Simulator containers have completed their tasks, i.e., all devices
within each container have finished their assigned work, the Simulation Manager
aggregates and stores relevant data and statistics. Finally, all resources are cleaned
up to ensure a stable environment for subsequent simulations.

Simulation Layer. The simulator layer resides at the core of the FIST frame-
work, simulating all devices within one or multiple Docker containers. These con-
tainers establish the communication with the IoT platform backend and execute
tasks such as firmware updates, which constitute an important feature of IoT plat-
forms. A Fleet Simulator container can represent one or multiple devices, depending
on the configuration. Figure 2 illustrates the internal structure of a single Fleet Sim-
ulator container.

Within the Fleet Simulator, a Fleet Manager is responsible for managing the
lifecycle of the simulated devices. It ensures their proper initialization, task exe-
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Fig. 2 Fleet Simulator internal structure overview.

cution, and termination. Additionally, the Fleet Manager provides an interface for
monitoring the simulation process and retrieving real-time statistics. The HTTP
Server allows external entities to observe the ongoing simulation and retrieve the
corresponding data.

Each simulated device has two components: the Application Programming In-
terface (API), which facilitates communication between the device and the IoT
platform and defines the task execution behavior for each virtual device, and a Con-
troller, that is assigned by the Fleet Manager. The Controller holds essential in-
formation required for device-side tasks, including adding realistic behaviors that
can affect a task execution, such as device workloads and abrupt crashes. Further-
more, the Controller reports the device status to the Fleet Manager for control and
statistical analysis.

2.1 Device simulation

Each simulated device is encapsulated and managed by one Fleet Simulator per
container. The lifecycle of a simulation, from the perspective of an individual device,
consists of two phases: the connection to the IoT platform and the execution of the
tasks.

Connection to the IoT platform. The connection phase starts immediately after
the creation of the device. The Simulation Manager controls when and how devices
are allowed to connect to the IoT platform backend services. This is done through
a REST API call to each of the Fleet Simulator HTTP servers. FIST offers a vari-
ety of methods to manage and initiate the connection of multiple devices to the IoT
platform, even when these devices are distributed across multiple containers. This
is implemented to facilitate different connection workloads between the simulated
devices and the IoT platform. This configuration comprises two adjustable param-
eters provided directly within the YAML configuration: the policy for creating and
starting containers and the policy for creating and registering devices. Both parame-
ters permit sequential and parallel initialization, resulting in a total of four potential
connection workloads.
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Tasks execution. The second phase of a device’s lifecycle is the execution of the
user-defined tasks, while supporting simulated device workloads and crashes. Each
device uses an internal scheduler to manage the execution of generic tasks. This ap-
proach ensures that only one task is executed at any given moment for a device, with
subsequent tasks being queued for future execution. An additional configuration is
the ability to simulate device crash behaviors.

2.2 Simulation of the Network Environment

To mimic realistic network conditions, the Network Environment Simulator compo-
nent uses docker-tc, which is designed for Docker containers and is a modifica-
tion of the Linux Traffic Control utility [13]. More specifically, any packet transiting
through the container’s veth interface may be affected by docker-tc policies
based on the following configurable rules:

• Limitation of incoming network bandwidth for a container, ensuring that the
download speed of a container does not exceed a specified value.

• Delay, duplication, drop, or corruption of a percentage of outgoing packets from
a container.

During our experiments, we identified some issues that occurred under high traf-
fic scenarios simulated by the FIST framework. To address this, we implemented
a patch to the docker-tc API that enables more configurable network limiting
parameters. This patch is available as part of the FIST GitHub repository.

To ensure a proper use of docker-tc within FIST, both simulated devices and
target IoT platform must be within the same Docker Bridge network. Optionally,
it is possible to apply the network simulation environment to individual devices by
running each of these simulated devices in a separate container.

2.3 IoT platform integration

The FIST framework is designed to allow an easy integration of different target IoT
platforms. To this end, we provide minimal implementations on how to interact with
and manage IoT platforms, as well as how a simulation should be conducted. The
following integration steps (illustrated in blue in Figure 3) are required to support a
new IoT platform :

• Declare how the FIST framework should handle different phases of the IoT plat-
form lifecycle, primarily its creation, task triggering, termination, and cleanup
(IoT Platform drivers).

• Specify the device-specific configurations (e.g., authentication certificates) that
are primarily involved in the creation and setup of Fleet Simulator containers
(Device drivers).
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Fig. 3 User-defined components (blue) for integrating new IoT platforms with FIST.

• Implement the simulated device behavior, such as handling communication with
the IoT platform and implementing task execution details.

3 Experimental setup

The FIST implementation is based on Python v3.10.12 for the Simulation Man-
ager component and Go 1.21.2 for the Fleet Simulator. The repository with the
complete implementation of FIST framework and the code used to generate all the
experimental results is available online1.

Experiment tasks description. In the following subsections, we present the
tasks that are executed in each of the simulated scenarios. The corresponding re-
sults are detailed in Section 4.

Connection Capacity. This experiment evaluates the capacity of each IoT plat-
form to handle a large number of simultaneous incoming connection requests. The
simulation setup consists of 20,000 devices that simultaneously attempt to connect
to the target IoT platform. Finally, we evaluate how many devices successfully es-
tablish a communication channel with the IoT platform. We measure the time re-
quired for the scenario to complete, which includes the connection attempts of all
the simulated devices. Each scenario is executed five times and we report the aver-
age and standard deviation for these executions.

Firmware Update Distribution. This scenario evaluates the efficiency and re-
liability of firmware update distribution for different firmware and fleet sizes. Our
experimental setup consists of 10 Fleet Simulator containers, each containing an
equal number of simulated devices. We fix the firmware size to 32MB and vary the
total number of simulated devices from 1,000 to 5,000.

We use the docker-tc network simulator to define the following parameters for
the Fleet Simulator containers: 2% of messages are lost during transmission, 2%
of messages are duplicated, 1% of messages experience corruption, and messages
consistently encounter a 50ms delay before transmission2,3.

1 https://github.com/hitachienergy/fleet-simulator-for-scalability-tests
2 https://www.pingman.com/kb/42
3 https://obkio.com/blog/acceptable-packet-loss/
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Table 1 Successful connections for Thingsboard, when 20,000 devices concurrently attempt to
connect.

Configuration Succ. connections Devices task duration [mm:ss]

Mean SD Mean SD

Memory 19,794 451 01:07 00:44
Memory+Net. 19,976 51 01:50 00:53
Kafka 19,889 177 01:43 00:50
Kafka+Net. 19,960 88 03:04 01:17

Hardware platforms. We ran the experiments using a workstation with a 62 GB
RAM (DDR4 2133Mhz) and a 10-core Intel Xeon CPU (E5-2660 v3, 2.60 GHz).

To evaluate the FIST framework, we focus on the Thingsboard IoT platform. Ad-
ditional results (i.e., including Eclipse hawkBit) are detailed in the extended report
(the link will be available in the camera ready version).

Thingsboard. ThingsBoard[22] is an open-source IoT platform that supports
multiple features, including various industry-standard communication protocols
(e.g., MQTT, CoAP, and HTTP). We explore two distinct configurations of the
ThingsBoard platform. The first configuration uses in-memory file storage, while
the second uses Apache Kafka[23, 1], an open-source distributed message broker.
Furthermore, our implementation considers the use of an HTTP communication
channel between the virtual devices and the IoT platform. Other supported proto-
cols can be enabled as well.

4 Experimental results

In this section, we present the outcomes of our experiments evaluating Thingsboard
using the FIST framework. Additional experiments (including Eclipse hawkBit) are
available in the extended report.

4.1 Thingsboard results

Connectivity capabilities. In Table 1, we investigate the connection capabilities of
the Thingsboard IoT platform across various Thingsboard configurations and net-
work conditions. Using the network simulation increases the successful connec-
tions, albeit associated with a minor increase in task duration. This result is likely
due to the impact of network delays, which extend the overall connection session
duration. The increase in task duration in both Thingsboard configurations during
realistic network emulation further supports this hypothesis. In certain simulation
runs, all 20,000 devices were able to successfully connect to the platform.
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Number of devices. Table 2 summarizes the results of having different numbers
of devices for firmware transfer simulations. The duration of the task is primarily
influenced by the number of devices under consideration. This observation is con-
sistent with the ThingsBoard documentation4, which states that a fixed number of
devices (e.g., 50) are actively processed at any given moment, while the remaining
devices are in a waiting state. While this approach ensures a more balanced load, it
comes at the cost of a slower task execution. It is possible that increasing the pool
size could increase the task speed. However, more investigation is needed to validate
this hypothesis. Furthermore, both configurations of the ThingsBoard platform ex-
hibit a linear relationship between the number of devices and the task duration, with
a noticeable impact of the realistic network environment in both configurations.

4.2 Discussion

We identify several factors that influence the experimental results above:
Device tasks. The accurate simulation of devices relies on the implementation of

the device’s primary task execution. It is therefore the developer’s responsibility to
use a primary task that is close the realistic behavior of the real device.

Additional platform parameters. Our experiments explore the main subset of
configurations of the ThingBoard IoT platform. Additional tuning of the remaining
parameters could have an impact on the obtained results. To support further experi-
ments, the FIST YAML configuration file allows specifying parameter values to be
used by the target IoT platform.

Network interface. For the FIST framework implementation, the simulated de-
vices within a single Fleet Manager Docker container communicate via a single
network interface with the IoT platform. This single interface could become a bot-
tleneck in high traffic load scenarios. To avoid this, FIST enables creating a custom
number of Docker containers for a simulation, each with a configurable number of
simulated devices. This reduces the single interface bottleneck, as it distributes the
total number of simulated devices across multiple containers.

Table 2 Firmware update duration for Thingsboard, using a 32MB firmware binary.

# of devices Duration [hh:mm:ss]

Memory Memory+Net. Kafka Kafka+Net.

1,000 00:10:02 00:11:56 00:10:03 00:13:08
2,000 00:20:09 00:29:41 00:20:04 00:26:24
3,000 00:30:14 00:42:29 00:30:05 00:39:57
4,000 00:40:06 00:54:29 00:40:06 00:50:30
5,000 00:50:07 01:04:07 00:50:09 01:04:55

4 https://thingsboard.io/docs/user-guide/install/config/
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5 Related work

Multiple studies evaluate the technical features of IoT platforms. A framework for
evaluating the high-level features and design of an IoT platform was proposed by
Mazhelis et al. [15]. Mineraud et al. [17] conducted a comprehensive gap analy-
sis of 39 platforms, identifying gaps and providing recommendations for enhancing
platform performance. Guth et al. [9] compared the architectures of various IoT
platforms and introduced a reference architecture. Thangavel et al. [21] developed
a middleware that uses MQTT and CoAP and conducted a corresponding perfor-
mance evaluation.

A cloud-based performance evaluation was conducted by Happ et al. [10] to eval-
uate publish/subscribe protocols within the context of a smart city. They used data
from social weather services, smart car sharing, and traffic monitoring to test the
performance of the protocols in each case. Talaminos et al. [20] introduced a soft-
ware framework called Distributed Computing Framework (DFC) for benchmarking
Machine-to-Machine (M2M) protocols in healthcare applications.

Vandikas et al. [24] presented the first performance evaluation of a platform
named IoT-Framework. In their experiments, they employed a load generator tool,
Tsung, to apply varying loads to their platform. Alexey et al. [16] evaluated the
performance of the OpenIoT platform in terms of its data ingestion and storage ca-
pability. Recent studies [14], [8] have been conducted to evaluate the performance
of Fiware. In [8], two Fiware protocols, MQTT and LWM2M, were evaluated. Car-
doso et al. [3] conducted a performance evaluation between Fiware and ETSI M2M.
Cruz et al. [4] provided a performance evaluation of five open-source IoT platforms
using Jmeter [11], evaluating the REST API and measuring the error percentage and
average response time under different load rates and packet sizes.

Our work introduces a framework for standardizing IoT platform simulations.
We configure it to be used with open-source IoT platforms, including realistic task
execution and device behavior emulation. We then use our framework to evaluate
the performance of these IoT platforms.

6 Conclusion

In this work, we introduced a new framework (FIST) designed and built to facilitate
the testing of IoT platforms under different configurations and realistic network con-
ditions. By configuring FIST to test two popular IoT platforms, we have validated
its capabilities via realistic use cases. Leveraging FIST’s extensibility, future work
will target further performance and scalability analysis of different IoT platforms,
as well as modelling heterogeneous IoT devices.



10 Fabio Muratori, Yuening Yang, Zeineb Rejiba and Andrei Marian Dan

References

1. Apache Software Foundation: Apache Kafka. https://kafka.apache.org. Accessed: February
9, 2024

2. Balena, IoT Fleet Management Platform. https://www.balena.io/. Accessed: March 20, 2024
3. Cardoso, J., Pereira, C., Aguiar, A., Morla, R.: Benchmarking iot middleware platforms. In:

A World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2017 IEEE 18th Inter-
national Symposium on, pp. 1–7. IEEE (2017)

4. Da Cruz, M.A., Rodrigues, J.J., Sangaiah, A.K., Al-Muhtadi, J., Korotaev, V.: Performance
evaluation of iot middleware. Journal of Network and Computer Applications 109, 53–65
(2018)

5. Direct device integration API, Eclipse Hawkbit. https://eclipse.dev/hawkbit/apis/ddi api/. Ac-
cessed: February 9, 2024

6. Device management federation API, Eclipse Hawkbit.
https://eclipse.dev/hawkbit/apis/dmf api/. Accessed: February 9, 2024

7. Eclipse Hawkbit. https://eclipse.dev/hawkbit/. Accessed: February 9, 2024
8. Estuardo, V.: Performance evaluation of scalable and distributed iot platforms for smart re-

gions. Master’s thesis, Lulea University of Technology, Sweden (2017)
9. Guth, J., Breitenbucher, U., Falkenthal, M., Leymann, F., Reinfurt, L.: Comparison of IoT

platform architectures: A field study based on a reference architecture. In: Cloudification of
the Internet of Things (CIoT), pp. 1–6. IEEE (2016)

10. Happ, D., Karowski, N., Menzel, T., Handziski, V., Wolisz, A.: Meeting iot platform require-
ments with open pub/sub solutions. Annals of Telecommunications 72(1-2), 41–52 (2017)

11. Jmeter load generator. https://jmeter.apache.org/ (2018). Online; accessed 23-March-2018
12. Łukasz Lach: docker-tc: Docker traffic control. https://github.com/lukaszlach/docker-tc

(2024)
13. Linux man-pages project: tc(8) - Linux man page (2024). URL http://man7.org/linux/man-

pages/man8/tc.8.html. Accessed: Feb 12, 2024
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