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Abstract. We address the problem of fence inference in infinite-state concur-
rent programs running on relaxed memory models such as TSO and PSO. We
present a novel algorithm that can automatically synthesize the necessary fences
for infinite-state programs.
Our technique is based on two main ideas: (i) verification with numerical do-
mains: we reduce verification under relaxed models to verification under sequen-
tial consistency using integer and boolean variables. This enables us to combine
abstraction refinement over booleans with powerful numerical abstractions over
the integers. (ii) synthesis with refinement propagation: to synthesize fences for
a program P , we combine abstraction refinements used for successful synthesis
of programs coarser than P into a new candidate abstraction for P . This “proof
reuse” approach dramatically reduces the time required to discover a proof for P .
We implemented our technique and successfully applied it to several challenging
concurrent algorithms, including state of the art concurrent work-stealing queues.

1 Introduction
Modern architectures use relaxed memory models in which memory operations may
be reordered and executed non-atomically [2]. To allow programmer control over those
orderings, processors provide special memory fence instructions. Unfortunately, man-
ually reasoning where to place fences in a concurrent program running on a relaxed
architecture is a challenging task. Using too many fences hinders performance, while
missing necessary fences leads to incorrect programs.
Placing Memory Fences Finding a correct and efficient fence assignment is important
for expert designers of concurrent algorithms as well as for developers wishing to im-
plement a concurrent algorithm from the literature (these algorithms are regularly pub-
lished without any mention of fences). Yet, manually finding the right fence assignment
is difficult as these algorithms often rely on subtle ordering of events, which may be vi-
olated under relaxed memory models [11, Ch.7]. Further, the process of placing fences
has to be repeated whenever the algorithm changes or is ported to another architecture.
Our Approach In this work we propose a novel automatic framework for synthesis of
memory fences that can handle infinite-state programs. Given a program P , a safety
specification S, an abstraction α and a memory model M , our system automatically
synthesizes a memory fence assignment f such that the program P with fence assign-
ment f (denoted by P 〈f〉) can be shown to satisfy the specification S underM using α,



that is [[P 〈f〉]]αM |= S. This is a particularly challenging task as even automatic verifi-
cation is a difficult problem: currently there is very little work on automatic verification
of infinite-state concurrent programs [8, 1] running on relaxed architectures, yet most
concurrent algorithms are infinite-state (e.g. [23, 6]). Our system is based on two key
ideas.

Synthesis via Abstraction Refinement Across Programs First, we introduce a synthesis
algorithm which explores the abstraction refinements needed to verify a program P by
combining abstraction refinements used for successful verification of programs coarser
than P (programs that use a superset of fences). This is important as finding an abstrac-
tion refinement that is precise enough to verify a concurrent program is known to be
a difficult problem. Our “proof reuse” approach reduces the time required to prove P .
To the best of our knowledge, this is the first work which performs abstraction refine-
ment by learning information across multiple programs, as opposed to the traditional
abstraction refinement typically performed within a single program.

Verification via Reduction with Numerical Abstract Domains Second, we verify a
program under relaxed memory models by reduction to a program under sequential
consistency. This reduction approach, also advocated by other works [3, 8], is powerful
as it enables one to leverage advances in the analysis of concurrent programs under
sequential consistency. Based on this general idea, we reduce the verification problem
under relaxed models to a problem of verification under sequential consistency using
integer and boolean variables.

This reduction enables us to use powerful numerical abstract domains such as Poly-
hedra [7] and allows us for the first time to verify properties of infinite state concurrent
algorithms such as the Chase-Lev [6] and THE [9] work stealing queues. However, nu-
merical domains are insufficient by themselves as they can only represent convex infor-
mation and the non-determinism introduced by relaxed memory models often requires
capturing disjunctions. To track such information precisely, we leverage the expressive
power of an abstract domain that combines numerical information with finite boolean
information (predicates). We track the non-deterministic aspects of the relaxed memory
model using disjunctions in the finite part of the domain.

Main Contributions The novel contributions of our system are:

– A verification procedure based on transforming a program under relaxed seman-
tics into a program under sequential consistency, enabling application of powerful
numerical abstract domains. To refine the abstraction, we show how to track the
non-deterministic aspects (which induce non-convex information) inherent in re-
laxed memory models via disjunctions encoded in the finite part of the domain.

– An efficient synthesis procedure which searches for minimal fence assignments by
combining abstraction refinements used in successful proofs of coarser programs.

– An implementation and evaluation of our system for the x86-TSO and PSO memory
models instantiated with classical numerical domains such as Polyhedra. We per-
formed an extensive experimental study on a set of 15 concurrent algorithms. We
believe this is the first time classic abstract interpretation has been used to prove
properties of infinite-state work-stealing queues [6, 9].



2 Overview

Thread 1:

1 flag0 = 1;
2 turn = 1;
3 f1 = flag1;
4 lt1 = turn;
5 if ((lt1 != 0) & (f1 != 0))
6 goto 3;
7 nop; // CS
8 flag0 = 0;
9 goto 1;

Thread 2:

1 flag1 = 1;
2 turn = 0;
3 f2 = flag0;
4 lt2 = turn;
5 if ((f2 != 0) & (lt2 = 0))
6 goto 3;
7 nop; // CS
8 flag1 = 0;
9 goto 1;

assert always ((pc1 6= 7) ∨ (pc2 6= 7))

Fig. 1. Peterson mutual exclusion algorithm

In this section, we provide an informal overview of our approach using Peterson’s
mutual exclusion algorithm (shown in Fig. 1). More elaborate examples are considered
in Section 5.

2.1 Motivating Example

In Fig. 1, each of the two threads attempts to reach their critical section (CS) at Line 7.
To enter the critical section, a thread first checks whether the other thread intends to
enter the critical section (by checking the value of flag0 or flag1), as well as its turn
(value of turn).

Our goal is to guarantee that both threads do not enter the critical section simul-
taneously. This property holds when the two threads run on a sequentially consistent
machine, but no longer holds when they run on a relaxed memory model such as PSO
or TSO. Under relaxed memory models, the writes to flag0, flag1, and turn per-
formed by one thread may be buffered and not yet visible to the other thread when it
reaches the condition at Line 5. As a result, both processes may enter the critical sec-
tion simultaneously. For example, if thread 1 enters the critical section, and its write to
flag0=1 has not yet been flushed to main memory, thread 2 will pass its check at Line 5
and also enter the critical section. To guarantee that the mutual exclusion holds under
relaxed memory models, the programmer has to explicitly add memory fences to the
program. However, because fences are expensive, the programmer faces the challenge
of inserting the minimal set of sufficient fences that makes mutual exclusion hold.

2.2 Searching for fence assignment and refinement placement

Our goal is to synthesize a minimal fence assignment for a given program, specification,
and memory model. Finding such a minimal fence assignment involves a search over
the space of possible fences and automatically checking the correctness of each program
in the space. To automatically verify a program, we employ abstraction refinement. In
our setting, abstraction refinement is described as a set of program locations (discussed



in detail later) which we refer to as a refinement placement.This leads to the following
two-dimensional synthesis challenge:

Find a refinement placement and a minimal fence assignment which verify the program

Naive approach A naive approach where we perform an exhaustive search of the
fence/refinement space is almost always non-feasible. For example, even for Peterson’s
algorithm, there are 26 potential fence assignments and 223 potential refinement place-
ments (we explain these in Section 2.3), leading to a total number of 229 points in the
fence/refinement space!

       propagation of: 
  program correctness  
                    +  
abstraction refinements 

means the program need not be explored further 

means the program has been explored 

means               is a successful abstraction refinement used to verify program  

 is a suggestion to prove program       with a combined abstraction refinement 

Legend: 

means the program is about to be explored 

f1,r1 
f1,r1 f2,r2 

f2,r2 

f3,r3 
f3,r3 

Fig. 2. Propagation of program correctness and abstraction refinements.

Our approach: semantic program and proof propagation Our approach works by
pruning large parts of the search space, based on the following two observations (here
we use the notation P 〈f, r〉 to mean program P with fence assignment f and refinement
placement r):

– implied correctness: if the program P 〈f, r〉 is verified successfully, then it implies
the correctness of any other point in space which uses a superset of the fences in f
or a superset of the refinement locations in r.

– implied incorrectness: if the program P 〈f, r〉 fails to verify, then it implies the
incorrectness of any other point in space which uses a subset of the fences in f or
a subset of the refinement locations in r.

Fig. 2 shows an example of one of our propagation techniques (discussed in Sec-
tion 3.1) and is meant to give an intuition. Here, successful verification of P 〈f1, r1〉 and
P 〈f2, r2〉 implies the correctness of all programs in the search space “below” these two



(all programs with a subset of the fences). Further exploration of the space can first at-
tempt to verify the point P 〈f3, r3〉which employs a smaller set of fences (f3 = f1∩f2)
yet uses a refinement placement which combines successful refinement placements from
different programs (i.e. r1 and r2). The intuition behind this combination is that slight
relaxation of the program via fewer fences should only require slight adjustment of the
abstraction refinement. Our experimental evaluation (Section 5) shows that propagation
is effective for finding a minimal fence assignment for many of our benchmarks.

2.3 Refinement Placement - Reduction & Abstraction

We next describe several ingredients of our approach to verification of infinite-state
programs running on relaxed memory models.

/* begin store */
if flag0_cnt_0 > 0 {

overflow = true;
halt;

}
flag0_cnt_0 = flag0_cnt_0 + 1;
if flag0_cnt_0 < 2

flag0_1_0 = 1;
/* end store */
/* begin flush */
yield;
while * do {

if flag0_cnt_0 > 0 {
flag0 = flag0_1_0;
flag0_cnt_0 = flag0_cnt_0 - 1;
yield;

}
}
/* end flush */
yield;

Fig. 3. Translation of flag0=1 under PSO.

As described in the motivating ex-
ample, on a relaxed memory model,
writes to shared memory are not imme-
diately visible to all processes: writes are
first placed into a local buffer and then
(non-deterministically), a flush instruc-
tion pops values from that buffer and
writes them to shared memory. In our set-
ting, this mechanism is encoded in source
code via a translation phase.

Non-determinism due to flushes Fig. 3
shows the translation of the statement
flag0=1 for the PSO memory model
(in this model, each thread maintains a
FIFO buffer for each shared variable). In-
tuitively, flag0=1 is translated into two
parts: i) the write to the FIFO buffer and a
non-deterministic flush. Details of this
translation are discussed in Section 4.
Here, we only discuss the translation of
the flush. A flush from a store buffer
works by writing back to shared mem-
ory an arbitrary number of items from
the buffer. This is captured by the while
(∗) loop that has a non-deterministic ter-
mination condition (denoted by ∗).

The non-deterministic loop introduces a significant challenge when reasoning with
numerical domains (which capture state via relations between variables). The reason
is that two program states appearing right after the while loop has completed differ
significantly depending on whether the flush was performed or not. Both states can be
captured with disjunctions, but standard (convex) numerical domains often dramatically
lose precision exactly in such (disjunctive) cases.

Local abstraction refinement To address this loss of precision, we use an abstract do-
main that combines numerical information with a finite boolean domain. By carefully



introducing boolean predicates, we can refine the abstraction (by splitting the numerical
state) in a local manner. While local refinement may restore sufficient precision for suc-
cessful verification, it unfortunately comes at an exponential cost. The addition of new
predicates can lead to an exponential blowup of the program analysis, as each predicate
may double the state space. Further, such a refinement is not required for all locations
of a flush. For example, if we can prove that a flush is always reached with an empty
buffer, the flush will have no effect, and thus there is no need to refine the abstraction
at such locations (we elaborate on this point in Section 4.4).

This introduces the challenge of finding a suitable refinement placement (a subset
of the flush program locations) that is precise enough to enable verification yet is
scalable enough for the analysis to terminate in reasonable time.

3 Abstraction-Guided Fence Synthesis
In this section, we present a new synthesis algorithm which propagates both fence as-
signments and refinement placements. Our algorithm leverages implied correctness/in-
correctness to reduce the search space. The algorithm treats the two dimensions of the
problem as having the same importance, and looks for a minimal fence assignment
and a minimal refinement. In addition, the algorithm strives to minimize the number of
fences based on a new concept where an abstraction refinement is obtained by combin-
ing successful refinements across programs.

3.1 Abstraction-Guided Fence Synthesis

Algorithm 1 provides a declarative description of our approach. The algorithm takes
as input a program P , a specification S, a memory model M and an abstraction α,
and produces a (possibly modified) program P ′ that satisfies the specification under M
with a minimal verifiable fence assignment. The algorithm leverages information from
several points in the space in the verification effort of a given point.

Fence assignment and refinement placement A fence assignment f for a program P
with program labels Labp is simply a subset of program labels f ⊆ Labp. A refinement
placement r for a program P is also a subset of program labels, but it is restricted only
to program labels of flush operations. The details of the refinement are elaborated in
Section 4 and are not important for understanding the central concept of the synthesis
algorithm presented in this section. For a given fence assignment f and a refinement
placement r, P 〈f, r〉 denotes the program P with fences placed according to f and an
abstraction refinement selected according to r.

Searching for satisfying placements The algorithm begins by initializing a worklist
with (i) the program under a full fence assignment (Line 3) together with (ii) a refine-
ment placement of program locations that are reasonable (Line 4) as determined by our
Empty Buffer Analysis (EBA) (see Section 4.4).

For each element of the worklist, the algorithm tries to improve the fence assign-
ment and refinement placement (Lines 8 and 9). The operation of these two functions
is discussed later in this section. Our algorithm then invokes the underlying verifier to
check if [[P 〈f, r〉]]αM |= [[S]]αM (Line 10).

Optimized Semantic Search Our algorithm maintains the two sets verified and falsified
for storing points 〈f, r〉 that have been verified or where verification failed, respec-



Input: P - program, S - Spec, M - memory model, α - abstraction, s.t. [[P ]]αSC |= [[S]]α

Output: P ′ - program such that [[P ′]]αM |= [[S]]αM with minimal a number of fences
1 verified = ∅
2 falsified = ∅
3 f = fullFenceAssignment(P)
4 worklist = {〈f,EBA(P,f)〉}
5 while worklist 6= ∅ do
6 〈f,r〉 = select some pair from worklist
7 known = verified ∪ falsified
8 f = improveF(f,known)
9 r = improveR(f,r,known)

10 if [[P 〈f,r〉]]αM |= [[S]]αM then
11 verified ∪= {〈f̂, r̂〉 | f ⊆ f̂,r ⊆ r̂}
12 alternatives = relax(f,r,known)
13 else
14 falsified ∪= {〈f’,r’〉 | f’ ⊆ f, r’ ⊆ r}
15 alternatives = restrict(f,r,known)
16 end
17 worklist = (worklist ∪ alternatives) \ known

18 end
19 〈f,r〉 = min(verified)
20 return P 〈f,r〉

Algorithm 1: Semantic search for finding minimal verifiable fence assignments.

tively. Initially, both of these sets are empty. In the case of successful verification, the
algorithm adds 〈f, r〉 to the set of verified points in space. However, the algorithm
does more than that: it also adds to verified all points which consist of a superset
of fences as well as a superset of refinements. Successful verification of P 〈f, r〉 means
that the search can proceed to explore more relaxed versions of the program. The helper
function relax(f,r,K) is used to compute a set of 〈f’,r’〉 pairs that admit more be-
haviors (via a subset of fences) as well as coarser abstractions:

relax(f,r,K) = {〈f’,r’〉 | f’ ⊂ f and r’ ⊆ r and 〈f’,r’〉 6∈ K}

In the case of failed verification, the algorithms can add 〈f, r〉 to the set of falsified
points in space, but once again, it can do more than that. That is, the algorithm adds to
the set falsified all points in the space which consist of a subset of fences and a sub-
set of abstraction refinements. Failed verification 〈f, r〉means that the search should ex-
plore more restricted versions of the program. The helper function restrict(f,r,K)
computes a set of 〈f’,r’〉 pairs that admit fewer behaviors (via a superset of fences)
as well as more refined abstractions:

restrict(f,r,K) = {〈f’,r’〉 | f ⊆ f’ and r ⊂ r’ and 〈f’,r’〉 6∈ K}

The algorithm terminates when there are no more alternatives to explore, and returns
a program with a minimal fence assignment (in our implementation, we return all non-
comparable minimal fence assignments).
Parametric choices Our algorithm is parameterized on three dimensions:



– the choice for the next pair 〈f, r〉 to select at Line 6. The method of choosing the
next element determines if our search will be similar to a depth-first search, to a
breadth-first search or to a search that explores random elements of the space.

– the function ImproveF. This function leverages the knowledge of previous verifi-
cation attempts (i.e., from the set known). For example, if f already verified for a
different refinement r’ and f’ is a configuration in known which verified, then we
can inspect f ∩ f’ instead of f.

– the function ImproveR. With this function we improve the refinement r based
on available knowledge (i.e., from the set known). For a fence assignment f and a
refinement r, if 〈f’, r〉 and 〈f”, r’〉 both previously successfully verified and if f’
and f” are stronger than f (that is, a superset of fences), then ImproveR will return
r ∪ r’. Intuitively, this makes the abstraction refinement more precise, increasing
the chances of success.

4 Automatic Verification
In this section we discuss the three steps of our automatic verification procedure: the
reduction procedure, the underlying program analysis and the mechanism of abstraction
refinement. We also discuss a static empty buffer analysis that is used by our algorithm
to compute a set of possible abstraction placements to chose from (as discussed earlier).

4.1 Reduction

Similarly to [3, 8], we reduce a program P running on a relaxed model M to a program
PM running on sequential consistency. This enables us to directly leverage advances in
program analysis for sequential consistency. We adopt a similar translation procedure
to [8] where the key idea in constructing PM is representing the abstraction of the
store buffers of M as variables in PM . We illustrate the process for when M is the PSO
memory model. The process for x86-TSO is similar. For PSO, it is sufficient to consider
a program PPSO where every shared variable X in the program P is also associated
with: (i) additional k local variables for each thread t: x1_t, . . . , xk_t, representing the
content of a local store buffer for this variable in each thread t, (ii) a buffer counter
variable xcnt_t that records the current position in the store buffer of X in thread t.

The translation uses the function [[]] which takes as input a statement S, a thread
t, and a bound k on the maximum buffer size and produces a new statement as output
[[S]]tk ( Fig. 4). The translation procedure is described in detail in [8]. Let us take a closer
look at the most challenging method, the flush.

A flush is translated into a non-deterministic loop. If the buffer counter for the
variable is positive, then it non-deterministically decides whether to update the shared
variable X . If it has decided to update X , the earliest write (i.e. x1_t) is stored in X .
The contents of the local variables are then updated by shifting: the content of each xi_t
is taken from the content of the successor x(i+1)_t where 1 ≤ i < k. Finally, the buffer
count is decremented.

In our encoding of concurrent programs, context switches between threads are ex-
plicitly specified with yield statements (we place yield statements after every in-
struction). Because under the relaxed memory model a flush can be executed non-
deterministically by the memory subsystem at any moment during program execution,
our reduction places a (translated) flush after every yield.



[[X = r]]tk
if xcnt_t = k then
abort(“overflow”);
xcnt_t = xcnt_t + 1;
if xcnt_t = 1 then x1_t = r;
...
if xcnt_t = k then xk_t = r;

[[r = X]]tk

if xcnt_t = 0 then r = X;
...
if xcnt_t = k then r = xk_t;

[[fence]]tk
. for each shared variable X
generate:
assume (xcnt_t = 0);
. end of generation

[[flush]]tk
while * do

. for each shared variable X
generate:
if xcnt_t > 0 then

if * then
X = x1_t;
if xcnt_t > 1 then

x1_t = x2_t;
...
if xcnt_t = k
then
x(k−1)_t =
xk_t ;

end
xcnt_t = xcnt_t− 1;

end
end
. end of generation

end

Fig. 4. PSO Translation Rules: each sequence is atomic

4.2 Analysis with Numerical Abstract Domains

Once we have obtained the reduced program PM , we use abstract interpretation with
advanced numerical domains to verify its properties under sequential consistency. In
particular, if the property we are interested in verifying relates only to shared numerical
variables G appearing in program P (for example, the property of no array access out
of bounds), then when translating accesses to variables of G by P , the reduction to
program PM will only introduce additional numerical variables over the variables in
G: these are the local variables and counters. This enables us to directly use powerful
numerical domains such as the Polyhedra abstract domain over the resulting program
PM . There are three possible outcomes of the automatic verification step:

– The program PM verifies in which case the verification is successful.
– The program PM does not verify because an overflow occurred during the analysis.

There could be two reasons why overflow occurs:
• there exists a concrete execution in the program which indeed does lead to an

overflow (e.g. multiple stores to a shared variable without a fence in between).
• the abstraction is imprecise enough to establish that there is no overflow.

We cannot distinguish between these two cases and hence, when overflow occurs,
we increase k to a small bound (at most number of removed fences) or refine the
abstraction ( detailed below). Our experience is that small values of k combined
with an abstraction refinement of the numerical analysis work well in practice.

– The program PM does not verify because the property being checked fails to verify
under the current abstraction. In this case, we typically apply abstraction refinement
to the numerical analysis.



4.3 Abstraction Refinement of Numerical Analysis

As discussed above, abstraction refinement is often a vital step to enable successful
verification of the program PM . A key question then is which parts of the program PM
require a more refined treatment in the abstract? To find these statements in PM , we em-
ploy a two-step approach, where we always first verify the program P under sequential
consistency, before trying to verify the translated program PM . This allows us to focus
the search for abstraction refinement on the statements in PM that are the root cause for
the new behaviors. In our setting, these are the flush instructions appearing in PM as
it is via these statements that relaxed memory effects eventually become visible.

Abstraction refinement of the numerical analysis is accomplished in our system
by directly encoding the suggested refinement into the program PM by automatically
introducing boolean auxiliary variables at places where the memory model relaxation
takes effect. In particular, the number of boolean variables is proportional to k and
these boolean variables are initialized appropriately inside the branches of the translated
flush statement (to true or false respectively, depending at which branch the boolean
variable is assigned). E.g. for peterson’s algorithm (Fig. 1), under minimal verifiable
fence placement for TSO, our analysis found that a boolean variable was needed at the
flush after Thread 1 assignment to turn but not after that assignment for Thread 0.

This is yet another advantage of the reduction approach: it enables us to quickly ex-
periment with and provide the abstraction refinements over the base numerical domains
by modifying the program PM instead of trying to somehow change the internals of
an existing program analyzer (or build a new analysis). In particular, our system inte-
grates with CIP [13] (which supports logico-numerical domains) enabling us to match
the auxiliary boolean variables with the logical part of the combined domain.

Overall, we believe that we have found a good match between the particular type
of abstraction refinement required in our context, the fact that this refinement can be
encoded in the program and the ability of an existing analyzer to consume this encoding
directly into its abstract domain.

4.4 Empty-Buffer Analysis

The additional predicates from refinement placement track the non-determinism due to
flushes. However, such non-determinism is only relevant when the store buffers are not
empty. When the store buffers are empty, a flush operation has no effect, and thus
there is no need for a refinement at that program point. The challenge of course is to
statically identify program locations in which the store buffers are guaranteed to be
empty in any possible execution of the program. Towards that end, we use a simple
static analysis that identifies program points where buffers are guaranteed to be empty.
The analysis is sound, when it reports that a store buffer is empty, it guarantees that it
will be empty in any possible execution. In Section 5, we show that the empty buffer
analysis is effective and produces an upper bound on refinements that is significantly
lower than the total number of possible locations.

5 Evaluation
We implemented our approach as described in previous sections and evaluated it on
a range of challenging concurrent algorithms. To the best of our knowledge, this is
the first extensive analysis study in the context of relaxed memory models involving



infinite-state reasoning and abstract interpretation. All of our experiments were per-
formed on an Intel(R) Xeon(R) 2.13GHz machine with 250 GB RAM.

For the automatic verification step, we used ConcurInterProc [14] which uses the
APRON numerical abstract domain library [15]. To check that the inferred invariants
imply the specification, we used the Z3 SMT solver.

5.1 Concurrent Algorithms

In our experiments we used 15 concurrent algorithms (7 finite-state and 8 infinite-state).
Among these, there are 3 (infinite-state) array-based work-stealing queues and 7 mutual
exclusion algorithms. We are not aware of any previous attempts to automatically verify
properties of concurrent data structures such as the work stealing queues (WSQs) under
relaxed models. For all of the algorithms we verified safety properties (e.g. a pair of
labels is unreachable). For the WSQs, we verified consistency properties such as: the
head index of the queue is always less than the tail index.

While our technique never reports incorrect fence assignments, due to non-monotonic
analysis, the final result might lose the minimality guarantee. We note that in our bench-
marks, this situation was never encountered. To cope with non-monotonicity, the tool
has to spend more time searching when intermediate points fail to verify. In specific
situations (certain outputs from ConcurInterProc), the search continues or even retries
to verify a program when the verification tool ConcurInterProc returns “unknown”.

5.2 Results

Our experimental results for both PSO and TSO memory models are summarized in
Tables 1, 2, 3, and 4. Not all of the algorithms are shown due to space restriction.
Graphs for the remaining results can be found in [22]. The first column of each table
contains a tuple, under each benchmark name – the first element is the maximal number
of fences for the algorithm, and the second element is the total number of locations
for abstraction placements. For each benchmark, we bounded the search time to an
hour, two hours and four hours. Each time bound result has two parts: the minimal
number of fences achieved (columns labeled f ) and the minimal relaxation under that
fence assignment that the algorithm was able to find (columns labeled r). We compared
three versions of our search: (i) breadth-first search (lines labeled bfs), (ii) depth-first
search (lines labeled dfs) both without propagation and (iii) search with propagation
(prop). At each point, the algorithm explores the next element from the worklist which
is highest in the lattice for bfs, or lowest for dfs. After successful or failed verification
and updating the set known, we update the worklist with the immediate successors
of the attempted configuration (above or below the explored element - depending on
whether it was verified or not). The third search configuration (labeled prop) is a bfs
search with propagation.

The graphs depict the time it took to discover the minimal fence assignment. The
x-axis is the time in a “hour:minute:seconds” format and the y-axis is the number of
fences discovered. For some cases, such as PC1, it can be seen that the initial behavior
of the prop approach is similar to that of dfs. This is due to a “streak” of successful ver-
ifications where a successful verification from a previous stage (say fence assignments
“remove #9” and “remove #8” verified) affects the next element attempted by the prop
approach (for the example given “remove #8 and #9” will be attempted). This behavior



algorithm 1h 2h 4h

max(f, r) f r f r f r

abp prop 0 0 0 0 0 0

(2,17) bfs 0 0 0 0 0 0

dfs 0 0 0 0 0 0

concloop prop 2 4 2 4 2 4

(4,14) bfs 2 8 2 4 2 4

dfs 2 4 2 4 2 4

kessel prop 3 0 3 0 3 0

(6,12) bfs 5 2 4 7 4 1

dfs 4 7 4 7 4 7

loop2-TLM prop 4 5 4 5 4 5

(6,21) bfs 5 2 4 4 4 3

dfs 5 6 4 10 4 10

pc1 prop 2 0 2 0 1 3

(9,27) bfs 9 2 9 2 8 6

dfs 1 0 1 0 1 0

pgsql prop 4 0 4 0 4 0

(8,23) bfs 8 2 8 1 7 1

dfs 7 8 7 8 7 8

Table 1. PSO results. The graphs show discovered fence assignments over time.

algorithm 1h 2h 4h

max (f, r) f r f r f r

wsq-chase prop 4 0 4 0 4 0

(4,19) bfs 4 0 4 0 4 0

dfs 4 0 4 0 4 0

wsq-fifo prop 2 0 2 0 2 0

(2,13) bfs 2 6 2 5 2 4

dfs 2 6 2 0 2 0

wsq-the prop 7 5 7 4 7 0

(7,33) bfs 7 5 7 4 7 3

dfs 7 7 7 7 7 7

Table 2. PSO results. The graphs show discovered refinement placements over time.



algorithm 1h 2h 4h

(f, r) f r f r f r

abp prop 0 0 0 0 0 0

(2,17) bfs 0 0 0 0 0 0

dfs 0 0 0 0 0 0

concloop prop 2 4 2 4 2 4

(4,14) bfs 2 8 2 4 2 4

dfs 2 4 2 4 2 4

kessel prop 5 3 4 0 4 0

(6,12) bfs 5 3 5 1 5 1

dfs 5 6 5 6 5 6

loop2-TLM prop 6 2 5 8 4 14

(6,21) bfs 5 8 5 8 5 7

dfs 5 10 5 10 5 10

pc1 prop 3 3 3 3 1 14

(9,27) bfs 9 3 9 2 8 6

dfs 5 9 5 9 5 9

peterson prop 5 2 4 3 4 3

(6,23) bfs 6 0 5 5 5 2

dfs 4 7 4 7 4 7

pgsql prop 5 7 5 7 5 7

(8,23) bfs 8 4 8 3 8 1

dfs 8 8 8 8 8 8

Table 3. TSO results. The graphs show discovered fence assignments over time

is similar to dfs. For algorithms such as KESSEL and PGSQL, it can be seen that the dfs
approach finds early in the search a non-optimal fence assignment (the prop approach
finds a better assignment later) and no new points appear in the graph. In those cases
the dfs approach proceeds to explore lower elements in the lattice and fails repeatedly.

For several algorithms only the full assignment of fences was verified. Those algo-
rithms are described in Table 2. Here (unlike Table 1), the graph’s y-axis is the abstrac-
tion refinement placement that verified. Those graphs have more points and describe
more clearly the difference between the three approaches (dfs, bfs and prop). In many
cases, bfs explores “too many” elements high in the lattice, dfs converges fast to the
lowest element it can verify but then it needs to backtrack. For WSQ-THE, dfs didn’t find
a placement smaller than the full one. Perhaps given more time it would ”backtrack”
and find a placement equivalent to the one the prop approach found.

Summary It can be seen that the search with propagation (prop) finds smaller fence
assignments quicker than bfs and fewer or equal fence assignments than dfs.



algorithm 1h 2h 4h

(f, r) f r f r f r

queue prop 1 0 1 0 1 0

(1,13) bfs 1 0 1 0 1 0

dfs 1 0 1 0 1 0

wsq-chase prop 4 0 4 0 4 0

(4,19) bfs 4 0 4 0 4 0

dfs 4 0 4 0 4 0

Table 4. TSO results - The graphs show discovered refinement placements over time.

6 Related Work
Next, we discuss some of the work that is most closely related to ours. These works
include automatic verification (most closely related) techniques, dynamic analysis and
bounded model checking approaches, search propagation in synthesis as well as robust-
ness. Generally, while there has been some work on bounded model checking of con-
current programs running on relaxed memory models, there has been almost no work
on automatically verifying infinite-state concurrent programs running on these models.

Program Transformation One general direction for handling relaxed memory model
programs is to encode their effects into a program and then analyze the resulting pro-
gram using standard tools geared towards sequential consistency. Towards that, the
works of [3, 4] suggest source-to-source transformations which encode the relaxed mem-
ory semantics into the target program. We also believe that this is a viable path and in
our work, we also use a similar encoding approach. However, as we have seen, direct
encoding of the semantics is typically not sufficient when dealing with infinite-state
programs where the precision of the abstraction is critical.

Handling infinite-state programs Kuperstein et al. [18] handle some forms of infinite-
ness (such as that coming from the buffers), but do not handle general infinite-state
programs under sequential consistency. Other works in this direction are those of Lin-
den et al. [19, 20] which shows how to use automata as symbolic representation of store
buffers. Their work focused on programs that are finite-state under sequential consis-
tency. The work of Vafeiadis et al. [25] presents an approach for eliminating fences un-
der x86-TSO. Their approach is based on compiler transformations and assumes that the
input program is correct. The work of Abdulla et al. [1] builds on [18] and is able to han-
dle infinite-state programs under x86-TSO. That work combines predicate abstraction
with the store buffers abstraction from [18]. The approach uses traditional abstraction
refinement in order to discover the necessary predicates. Our recent work [8] handles
both x86-TSO and PSO memory models and also uses predicate abstraction. However,
the procedure for inferring the predicates necessary to verify the program under relaxed
memory models differs from standard abstract refinement. Instead, the paper proposes a
form of proof extrapolation: it first assumes that the program is verified under sequential
consistency and then shows how to adapt these predicates (in a memory-model specific
way) into new predicates which are then used as candidates for the verification under



the particular relaxed memory model. Both of these approaches are based on predicate
abstraction and require the predicates to be inferred via refinement or adaptation. In
contrast, the techniques presented in this work are based on iterative numerical abstract
interpretation which promises to scale better (but is focused on numerical domains). In
addition, our search algorithm combines propagation of abstraction refinements across
programs with program restriction via fence inference. Our work also has relevance
to the well known technique of lazy abstraction [10] which introduces the concept of
adjusting the level of abstraction for different sections of the verified program’s state
space. In our approach, the search can be seen as selectively introducing refinements
which guide the analyzer. However, unlike previous work, we learn new refinements by
combining existing successful refinements from several programs.

Explicit Model Checking for Relaxed Memory Models There have been several works
(e.g., [18, 16, 17, 12]) focusing on explicit-state model checking under relaxed mem-
ory models. Among those, [17] focuses on fence inference and [12] also describes an
explicit-state model checking and inference technique for the .NET memory model.
These approaches are sound only for finite-state programs, and cannot handle infinite-
state programs. CheckFence [5] takes a different approach, instead of working with
operational memory models and explicit model-checking, they convert a program into
a form that can be checked against an axiomatic model specification. This technique
unrolls loops at a preprocessing stage and cannot handle infinite-state programs.

In addition, there has recently been interest in exploring dynamic techniques for
testing programs running on various relaxed memory models. The work of Liu et al.
[21] dynamically analyzes (via a demonic scheduler) concurrent algorithms under the
TSO and PSO memory models and whenever it finds a violating trace proposes a repair
which inserts memory fences into the program. Recently, there has also been work on
leveraging various partial order reduction techniques for bounded model checking of
concurrent C++ programs [24]. Both of these works attempt to handle larger programs
by sacrificing soundness.

7 Conclusion
In this work, we presented a system that can automatically synthesize fences in infinite-
state concurrent algorithms running on relaxed memory models such as TSO and PSO.
Our system is based on two core ideas.

First, in addition to propagating correctness between different fence assignments,
the synthesizer explores the space of programs by using a form of “proof propagation”:
computing a candidate abstraction refinement of a given program by combining suc-
cessful abstraction refinements of coarser programs. Second, we reduce the problem
of automatic verification under a relaxed memory model into one of verification un-
der sequential consistency using only integer and boolean variables. This enables us to
leverage powerful numerical abstractions over the integers and to refine these abstrac-
tions by directly encoding the boolean refinement in the reduced program.

Finally, we evaluated our system on 15 challenging concurrent algorithms, includ-
ing concurrent work-stealing queues. We believe that this is the first extensive study of
using abstract interpretation techniques in the context of relaxed memory models and
the first time properties of some of these algorithms have been verified.
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