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Abstract—Remote firmware updates are critical for maintain-
ing the performance and security of Internet-of-Things (IoT)
device fleets. Remote updates are especially critical from a fleet
management perspective, requiring thousands of devices to be
kept up-to-date. When considering a fleet of devices, transferring
large update files is inefficient. Therefore many modern systems
consider differential updates. In this work, we describe and
evaluate a secure differential update implementation for fleets
of embedded IoT devices. We demonstrate how differential
updates can be performed on a real hardware platform using a
popular open-source embedded update framework, SWUpdate.
We also show how differential updates can integrate with redun-
dancy concepts such as A/B partitioning and on-device security
mechanisms such as secure boot. Our experiments, performed
using both real hardware and a device fleet simulator, identify
crucial differences between differential and full-image updates:
the differential updates can decrease the file size by 49%, the
install time by 78%, and require up to 77% more temporary disk
memory compared to full-image updates. These key insights are
essential for developers and practitioners when selecting the IoT
firmware update strategy.

I. INTRODUCTION

Internet of Things (IoT) enables thousands of devices to
remotely connect over the Internet and perform a multitude
of tasks. The firmware running on these devices requires
frequent updates to ensure device security, maintain/improve
performance, and upgrade features. For a handful of devices,
firmware can be updated locally. However, for large fleets, i.e.,
a set of IoT enabled devices, comprising thousands of devices,
remote firmware updates are the only viable solution [1].

In a remote update, applications, services, firmware, and
configurations are transferred from a server to the target
device(s) mainly over a network. With the proliferation of
software-based solutions across different industries, remote
updates are playing an increasingly pivotal role in Industrial
IoT (IIoT) [1]–[3]. Remote updates enable device manufactur-
ers to offer new features and services to customers, fix bugs,
and ensure the availability of their devices, all without needing
to physically access the device(s).

Although remote software and firmware updates are con-
venient, they also introduce several challenges, including
integrity and confidentiality, version control, dependencies,
update duration, and failure management [4]. One significant
challenge faced when performing remote updates for a fleet of
resource-constrained devices is the size of the update image
[4]. Sending the entire new firmware image is easy, however,
the large file sizes can lead to network bandwidth congestion,

higher device memory requirements, and longer download
and installation times. This is the reason why many modern
systems consider differential updates [5], [6].

A differential update represents the difference between the
contents of on-device firmware and the new firmware to be
installed. Depending on the difference between the two, the
final update image size can be significantly reduced, leading
to lower network bandwidth usage and lower download/install
times. Several existing works advocate the use of differential
updates [4], [7], focusing on optimized differential image
generation [5], [6] and update security [8], [9]. This work
complements the existing work by developing and evaluating
a framework for integrating differential updates with a secure
boot enabled device. Given a device with an existing secure
boot implementation, we designed a differential update strat-
egy and compared it with a full image update strategy through
experimental evaluation. Our objective is to evaluate the ef-
ficacy of differential updates in reducing the update file size,
download and install time, and temporary disk memory usage,
while preserving the existing secure boot implementation.

The main contributions of this work are:

1) The design of an efficient differential firmware update
strategy for secure boot enabled embedded Linux devices,
based on the popular update framework, SWUpdate. The
update process is integrated with an existing secure boot
mechanism and ensures general update security.

2) An end-to-end implementation of the efficient firmware
update strategy and extensive evaluation using both real
hardware and a device fleet simulator. Our results show
that differential updates, on average, decrease the update
image size by 49%, install time by 78%, and require up to
77% more temporary disk memory. These experimental
insights are key for practitioners and developers when
considering differential updates as a potential firmware
update strategy.

The remainder of the paper is structured as follows: Sec-
tion II presents background on SWUpdate, its usage, and
introduces other relevant firmware update concepts. Section III
provides details on how differential firmware updates can be
performed using SWUpdate and integrated into the secure boot
mechanism. Further, it explains the security implications of us-
ing differential updates and their comparison with a full-image
update strategy. In Section IV, we discuss our experimental
setup and present the results of our evaluation. Section V then



TABLE I: A/B Dual Partition Device Map

Partition Purpose Contents

1 Boot Bootloader
2 Root A A: boot files, root filesystem, application(s)
3 Root B B: boot files, root filesystem, application(s)
4 Data Read/Write Data

discusses further challenges and potential directions towards
applying differential firmware updates to industrial systems.
The state-of-the-art is presented in Section VI and Section VII
concludes the paper.

II. BACKGROUND

SWUpdate is a flexible, open-source library for performing
firmware updates on embedded Linux devices [10]. We chose
SWUpdate instead of Mender [11] or RAUC [12] because
of its flexibility and support for differential updates. The
differential handler provided with SWUpdate requires no
on-device computation and no external chunk downloading,
which is optimal for resource-constrained devices with limited
connectivity. Moreover, SWUpdate can be modified to support
new devices, operating systems and update handlers, making
it compatible across many platforms [13].

A. Using SWUpdate

As an input, SWUpdate receives a Copy In/Copy Out
(CPIO) file archive, which contains: sw-description (the update
description file), sw-description.sig (the security signature of
sw-description), update files and images, and pre- and post-
install scripts (shell scripts used to set the environment, trigger
reboots, etc). The basic process that occurs on the target device
to perform an update with SWUpdate is:

1) receive and extract the CPIO archive;
2) verify the sw-description signature with the public key

stored on-device;
3) parse the sw-description file and verify the checksums of

each update file;
4) run pre-install script(s);
5) perform all file and image updates;
6) run post-install scripts(s).

B. A/B Dual Partition

The A/B dual partition concept is used to ensure system
redundancy, i.e., if the active root partition fails during an
update or in normal operation, the device can restart and
boot the firmware on the backup root partition. SWUpdate
supports A/B partition configuration with the double-copy
update strategy [10]. The dual partition strategy uses two
copies of the root partition. One copy is active and running the
current firmware version, while the other copy remains inactive
and contains the previous version of the firmware. When an
update is performed on an A/B partitioned device it is applied
to the backup partition, preserving the active partition. After
the update, the active and backup partitions switch to load the
new firmware. Table I shows an example A/B partition map.

(a) Full Image Update (b) Differential Update

Fig. 1: Examples of an A/B Full Image and Differential Update
with SWUpdate

(a) Root Partition Layout (b) Full and Differential Updates

Fig. 2: Device Root Filesystem and Update File Formats

C. Full Image Update

The basic strategy for performing firmware updates on an
A/B system is to rewrite the entire backup root partition image
with the new firmware image. After the update, the device
reboots, switching the active partition to the new firmware.
The backup partition contains a previous copy of the firmware,
so that in case of a bug, security issue, or failure in the new
firmware the device may easily and automatically roll back
to the previous stable version. The full-image update method,
shown in Fig. 1a, is straightforward and easy to implement,
however, it is far from optimized. Between firmware versions,
much of the device root partition stays the same. For example,
the directory structure of the root partition is typically con-
stant. Moreover, individual files within the root partition may
undergo frequent updates, while other files rarely change. This
means that large amounts of duplicated data are sent from the
update server to the device, wasting bandwidth and increasing
update download and install time.

D. RDIFF

Librsync rdiff [14] is a tool used to generate and apply
differential files. SWUpdate provides a built-in differential
handler, based on the rdiff tool. The rdiff algorithm generates a
differential file between the base and target files. To reconstruct
the target, the base and differential files are combined. When
preparing an rdiff update, the differential files are generated
off-device during the firmware development process. The base
used to generate the differential must be the firmware file
currently installed on the device. During the update, the
differential file is applied by SWUpdate to construct the target



file. We consider differential updates using the rdiff update
handler, as there is no on-device computation required, making
them ideal for resource-constrained devices.

E. Secure Boot

Our target device implements an existing hardware-based
secure boot mechanism, which must be preserved for differ-
ential updates. The implementation of secure boot that we
are using is based on the pattern described by Löhr, Sadeghi,
and Winandy [15] and the implementation detailed by Schulz
and Josserand [16]. Each stage of the boot process, from the
initial bootloader to the root filesystem and application(s), is
protected with a unique key and signature. All components
are privately signed during development and the public keys
are saved to the device. Before each file is executed, it must
be verified. To ensure no tampering of the keys or firmware
files on the device, the first key is immutably embedded in
the device hardware. Each subsequent stage is protected by
a software key. Using a hardware-rooted secure boot pattern
ensures that the device only boots verified firmware [8], [17].

F. Root Filesystem Layout

To ensure the device firmware remains secure and resistant
to tampering, the root filesystem and the main application(s)
are stored in squashfs format, which is a read-only compressed
filesystem. The squashfs files, which are externally signed,
are verified and mounted during the boot process. A separate
partition is reserved for read/write data. Files utilized by the
bootloader may also be stored in the root partition. The layout
of the root partition is shown in Fig. 2a.

III. DIFFERENTIAL UPDATES WITH SWUPDATE

SWUpdate’s rdiff handler generates smaller update files
compared to a full image update. Using the rdiff handler,
SWUpdate can perform differential updates of either individ-
ual files or the entire partition. A limitation of the librsync
rdiff library is that it cannot reconstruct the target file in-place.
This implies that for full-partition updates, the differential file
must be compared with one partition and applied to the other.
Since the backup partition will be updated, the active partition
must be referenced. As the state of the active partition cannot
be guaranteed, it is safer to not use full-partition updates,
and instead target individual files with differential updates.
With SWUpdate, differential updates of individual files can be
applied directly to the backup partition, without referencing
the active partition. SWUpdate creates a temporary file on
the backup partition, where the file is reconstructed before
being installed in the target location. The rest of our work
utilizes single file differential updates, and describes strategies
to perform full updates by upgrading individual files.

Instead of sending the entire root partition image, the same
update can be performed with targeted differential file updates.
Differential files can be created for the individual files that
are changed within the root partition. Fig. 2b shows the two
SWUpdate files, one for a full image update and the other for
the differential update. For the differential update, the partition

image has been replaced with differential files that target
the individual files changed between versions. The method
for generating and performing the full-partition differential
updates using the rdiff update strategy is shown in Fig. 1b
and consists of the following steps:

1) On the development server, generate the rdiff signature
of the base firmware file (e.g., V-1.0) currently installed
on the backup partition, B.

2) Create the rdiff delta (differential) between the rdiff
signature and the target firmware file (e.g., V-1.2).

3) Package the rdiff delta file into the SWUpdate CPIO
update file archive.

4) On the device, receive and parse the CPIO archive.
5) Reference the firmware (e.g., V-1.0) currently installed

on the backup partition, B.
6) Reconstruct the target firmware (e.g., V-1.2) and install

to the backup partition, B.
7) Reboot with the updated partition, B, as the active parti-

tion.

The previous steps can be extended to support updating
multiple firmware files on the root partition within the same
update.

A. Secure Boot Implementation

A diagram of our secure boot implementation utilizing
the U-Boot [18] bootloader is shown in Fig. 3, and can be
described in the following stages:

1) first-stage ROM-code bootloader signature is verified
using a hardware-embedded key;

2) U-Boot Secondary Program Loader (SPL) is loaded by
the first-stage bootloader and verified with a software key;

3) Main U-Boot application is loaded by U-Boot SPL and
verified with a software key;

4) fitImage, which contains the kernel and initramfs is
loaded and verified by the main U-Boot application;

5) initramfs is verified and loaded by the fitImage;
6) external signatures of the root filesystem and application

files are verified and the filesystems are mounted by the
initramfs.

The first stage bootloader is device-specific and will not
be updated. The U-Boot bootloader (and associated SPL) will
likely be updated occasionally. The fitImage will likely be
updated more frequently and may be updated with differential
updates. Finally, the root filesystem and application files
and their associated signatures will be updated frequently,
presenting a good target for differential updates. The files
contained within the dashed line in Fig. 3 are the primary
targets of differential file updates.

B. Differential Updates with Secure Boot

Our proposed process to perform a differential update
while maintaining the secure boot chain and updating external
signature files is shown in Fig. 4. The update consists of the
following steps:



Fig. 3: Example of Secure Boot with the U-Boot Bootloader

Fig. 4: Differential Update with External Signatures

1) On the development server, generate the rdiff signature
of the firmware file (e.g. V-1.0) currently installed on the
backup partition, B.

2) Create the delta between the base rdiff signature and the
target firmware (e.g., V-1.2) file.

3) Using a securely stored private key, sign the target
firmware (e.g., V-1.2) file to generate the external signa-
ture required in Step 6 of the secure boot process shown
in Fig. 3.

4) Package the delta and the external signature file into the
SWUpdate CPIO archive.

5) On the device, receive and parse the CPIO archive.
6) Reference the firmware (e.g., V-1.0) currently installed

on the backup partition, B.
7) Reconstruct the target firmware (e.g., V-1.2) and install

it on the backup partition, B.
8) Overwrite the existing external signature (e.g., V-1.0)

with the new external signature file (e.g., V-1.2).
9) Reboot with the updated partition, B, as the active parti-

tion.

In the strategy described above, the entire signature file is
transmitted and the existing signature is completely overwrit-
ten. Since the signature files are small (usually only a few
hundred bytes) there is no considerable benefit to performing
a differential update of the signature file. On the other hand,
the squashfs files and the fitImage are updated with differential
files, as this can significantly reduce the amount of data needed
to complete the update.

TABLE II: Security of differential and full image updates

Requirement Differential Full Image

Confidentiality aes-256-cbc encryp-
tion, PKCS#11 for
key management

Same. More over-
head for encrypting
full image.

Integrity Digital signatures
using SHA256

Same.

Availability Pre-install scripts,
backup partition

Same. Easier recov-
ery due to size.

Authenticity Digital signatures Same
Non-repudiation Digital signatures Same

C. Update Security

To formally assess the security of the proposed firmware
update method, we look at the security objectives defined in
the CIA (Confidentiality, Integrity, Availability) triad:
Confidentiality: To avoid disclosing senstive information, the
firmware update and the sw-description files are encrypted us-
ing AES block cipher in CBC mode and 256 bit key (aes-256-
cbc). The encrypted firmware files and scripts are then sent to
the device where they are decrypted. Moreover, PKCS#11 is
used to securely manage and maintain the cryptographic keys
used to decrypt the update files
Integrity: digital signatures ensure that the differential update
files are not tampered with. The files are signed using SHA256.
The SWUpdate library also offers signing the firmware update
files using self-signed or Public Key Infrastrcuture (PKI)
certificates.
Availability: the proposed firmware update method ensures that
a device remains operational if a software update fails due to
a Denial of Service (DoS) or other reasons. This is acheived
through (a) a pre-install script that checks and detects any
mismatches in the differential update files, and (b) a backup
partition to ensure that the device does not stop working if an
update fails.

Besides the CIA triad, authenticity and non-repudation are
also acheived by the use of digital signatures. Particularly:
Authenticity: Digital signatures ensure that the firmware update
file identity is verifiable and that it is coming from a trusted
source.
Non-repudiation: Using PKI certificates to create the digital
signatures of the fimrware update files, the signing entity
(server) can not claim not signing/sending the files.

Table II summarizes the main security objectives acheived
by the differential firmware update and how it compares to the
full image update. While the security objectives are acheived
in both update methods (since the underlying technologies are
the same), the differential update method has the advantage of
lower computational overhead due to smaller image sizes as
shown in Section IV.

IV. EXPERIMENTAL EVALUATION

We describe two types of experiments that evaluate the
differential update strategy. The on-device experiments focus
on the local impact of the strategy - the duration to install



TABLE III: Ubuntu Experiment Update Files
(a) Firmware Versions

Update Base Target

1 17.10 18.04.1
2 18.04 18.04.2
3 18.04.1 18.04.3
4 18.04.2 18.04.4
5 18.04.3 18.04.5
6 18.04.4 18.10
7 18.04.5 19.04
8 18.10 19.10
9 19.04 20.04
10 19.10 20.04.1
11 20.04 20.04.2
12 20.04.1 20.04.3
13 20.04.2 20.04.4

(b) Firmware Update Sizes

Full Diff Reduc.
[MB] [MB] [%]

1 77.1 72.8 5.6
2 77.8 34.6 55.6
3 78.6 39.9 49.2
4 79.0 40.0 49.3
5 79.4 54.0 32.0
6 83.1 74.8 10.0
7 85.9 83.4 2.9
8 84.7 80.8 4.6
9 312.3 311.7 0.2
10 321.1 320.3 0.3
11 324.6 211.3 34.9
12 330.6 227.9 31.1
13 351.3 250.4 28.7

the differential update and the total disk memory required.
The device fleet simulator experiment measures the impact
of differential updates on the time required to distribute the
updates to large fleets of devices.
On-Device Experimental Setup: The on-device experiments
are performed on a Raspberry Pi 4 Model B 4GB v1.1,
with the following setup: a 32 GB SD card is partitioned
into a 100 MiB boot partition, a 1 GiB data partition, and
two equally-sized 15.45GB root partitions. One of the root
partitions is active, running Ubuntu Server 22.04.3. The active
partition contains SWUpdate and all required packages, while
the inactive partition contains the experimental firmware.

A. On-Device Update File Size

We generated update files for several different firmware ver-
sions in both the full image and differential update format. We
used past versions of Ubuntu [19] (Table IIIa) and OpenWRT
[20] (Table IVa). To simplify the experiments, the application
squashfs file is omitted and only a root filesystem squashfs
file is used. For each version, we downloaded the ARM64
firmware image, extracted the root filesystem, and compressed
it into squashfs format. These squashfs files were then used
to generate the experimental firmware updates. Each update
is applied to a base firmware that is two versions behind
the target, to simulate dual-copy updating, where the backup
partition contains the preceding version of the firmware. The
full image updates contain only a gzip-compressed copy of
the root EXT4 partition containing the new root filesystem
squashfs (format shown in Fig. 2a, excluding the application
squashfs). The differential update files contain only the rdiff
delta required to achieve the same target firmware version (the
differential file for the root filesystem squashfs). No extra files
or scripts are included in the updates, and the signatures were
omitted for the experiments. The contents of the two update
files are shown in Fig. 2b. The file sizes for each full image
and differential update are shown in Table IIIb for Ubuntu and
Table IVb for OpenWRT.

The reduction in update file size for differential updates
depends on the changes between the base and target ver-
sions, e.g., updates between minor versions of the firmware

TABLE IV: OpenWRT Experiment Update Files
(a) Firmware Versions

Update Base Target

1 22.03.0 22.03.2
2 22.03.1 22.03.3
3 22.03.2 22.03.4
4 22.03.3 22.03.5
5 22.03.4 22.03.6
6 22.03.5 23.05.0
7 22.03.6 23.05.1
8 23.05.0 23.05.2

(b) Firmware Update Sizes

Full Diff Reduc.
[MB] [MB] [%]

1 6.3 2.1 66.1
2 6.3 2.7 57.1
3 6.3 3.4 45.7
4 6.3 2.1 66.1
5 6.4 2.2 65.6
6 6.2 5.7 8.3
7 6.2 5.6 10.2
8 6.2 1.8 70.9

are significantly reduced with differential updates. For larger
updates with many changes, e.g., between major firmware
versions, using differential updates may fail to provide provide
a meaningful reduction. The average OpenWRT update size is
reduced by 49%, while the Ubuntu updates, which include
more major versions, are reduced by 23%, on average.

B. On-Device Update Duration

We measure the update duration for both the differential and
full image updates. Each full image and differential update
is repeatedly applied to its respective base firmware. The
duration of each update is recorded with the Linux time utility
and each update type is run 10 times. The data in Table Va
for Ubuntu and Table VIa represents the average update time
(both real time and CPU time) for each version.

The real time reflects how long the update actually takes
to complete, from start to finish. The CPU time represents
the time spent performing actual calculations. It is not in-
fluenced by the time spent waiting for file I/O and other
processes, which makes it more consistent between runs. For
the OpenWRT updates, using differential updates reduced the
real time by 78%, on average, and the CPU time by 64%.
The Ubuntu updates saw 37% decrease, on average in real
time and a 25% decrease, on average, in CPU time when
using differential updates. The difference in update duration
is not proportional to the file size reduction between the full
image and differential updates. Instead, the differential update
duration is dependent on the size of the target file. This is
because the rdiff library reconstructs the target file block-
by-block, copying blocks either from the base file or from
the differential file. The size of the target file controls how
many blocks must be copied, which therefore determines the
duration of the update. However, even in cases where there is
nearly no reduction in file size (rows 9 and 10 of Table Va) the
differential updates are faster than the full image updates. One
contributing factor is that decompressing the gzip-compressed
image file takes longer than reconstructing the differential files
for the same update. We measured the real time for the file
decompression and the rdiff reconstruction for each Ubuntu
update 10 times. On average, the rdiff reconstruction is 23%
faster (real time) than the gzip decompression for the same
update. However, this difference does not explain the full
discrepancy between the differential and full image updates,
as it amounts to a 12 second decrease in elapsed time, on



TABLE V: Ubuntu Experiment Results
(a) Average Update Duration

Full [s] Diff [s] Reduc. [%]

Real CPU Real CPU Real CPU

1 63.7 10.1 37.0 8.4 42.0 17.2
2 75.3 10.0 32.8 5.5 56.3 45.0
3 70.0 10.3 32.9 6.3 52.9 38.4
4 75.1 10.6 36.0 5.8 52.1 45.9
5 67.1 10.5 36.5 7.3 45.6 30.4
6 82.2 10.6 43.8 9.0 46.8 15.0
7 63.2 11.2 50.9 9.6 19.4 14.6
8 75.4 11.2 36.3 9.3 51.9 16.6
9 297.6 39.0 227.9 34.8 23.4 10.8
10 295.3 37.1 233.7 35.7 20.9 3.7
11 306.1 39.5 232.0 26.7 24.2 32.4
12 297.8 39.2 253.7 29.1 14.8 25.9
13 364.6 43.0 263.3 30.9 27.8 28.2

(b) Tmp. Memory Usage

Full Diff Reduc.
[MB] [MB] [%]

1 77.1 150.9 -95.6
2 77.8 113.3 -45.6
3 78.6 119.4 -51.9
4 79.0 120.0 -51.8
5 79.4 134.3 -69.2
6 83.1 159.0 -91.2
7 85.9 170.3 -98.3
8 84.7 166.5 -96.6
9 312.3 624.0 -99.8
10 321.1 641.3 -99.7
11 324.6 535.9 -65.1
12 330.6 558.5 -68.9
13 351.3 601.6 -71.3

average, while the Ubuntu differential updates are 47 seconds
faster than the full image updates, on average. The rest of
the discrepancy could be attributed to file I/O waiting and the
SWUpdate handler implementations, as directions for further
investigation.

C. On-Device Disk Memory

Performing any type of update requires sufficient disk
memory to be available for temporary copies of the update
images, files, and scripts. Streaming is not supported for
SWUpdate differential updates, and for full image updates, it
eliminates the possibility of verifying the integrity of the entire
update before starting the installation. For this reason, only
non-streamed updates are considered in this experiment. The
update file is parsed and extracted into a temporary directory
(e.g, /tmp). For differential updates, the differential files are
reconstructed in the temporary directory before being copied
to the target location. If there is insufficient space to extract
the update files or reconstruct the differential files, the update
will fail. To determine which files SWUpdate created, when
they were created and deleted, and the size of the files, a
watch was set on the temporary directory. The amount of disk
memory required to complete a full image update is the same
as the size of the update file after the decompression of the
update archive. Differential updates require disk memory to
extract the update file and reconstruct the differential files. The
maximum total disk memory required is the size of the update
file plus the size of the largest reconstructed differential file,
as SWUpdate reconstructs the differential files sequentially. In
this experiment, the only file is the root filesystem squashfs
archive. Therefore, the total amount of memory required to
complete the differential update is the size of the differential
update file (the file sizes are shown in Tables IIIb and IVb)
plus the size of the root filesystem squashfs (approximately
the size of the full update).

Table Vb shows the total disk memory required to complete
each Ubuntu update, while the OpenWRT data is shown in
Table VIb. On average, the OpenWRT differential updates
require 51% more disk memory than the equivalent full image
updates. The Ubuntu differential updates require, on average,
77% more disk memory than the full image updates. In the

TABLE VI: OpenWRT Experiment Results
(a) Average Update Duration

Full [s] Diff [s] Reduc. [%]

Real CPU Real CPU Real CPU

1 11.4 1.8 2.3 0.5 80.3 70.3
2 15.0 1.8 2.6 0.6 82.9 67.2
3 8.7 1.7 2.4 0.6 72.3 63.0
4 20.5 1.7 2.7 0.5 87.0 68.6
5 13.8 1.7 3.0 0.5 78.3 70.4
6 9.0 1.7 2.5 0.9 72.3 49.7
7 9.2 1.7 2.5 0.8 73.4 53.0
8 9.8 1.7 2.4 0.5 75.4 73.2

(b) Tmp. Memory Usage

Full Diff Reduc.
[MB] [MB] [%]

1 6.3 8.5 -33.8
2 6.3 9.0 -42.8
3 6.3 9.8 -54.2
4 6.3 8.5 -33.7
5 6.4 8.5 -34.3
6 6.2 11.9 -91.8
7 6.2 11.8 -90.0
8 6.2 8.0 -29.2

experiments where only one squashfs file is updated, the dif-
ferential updates require more disk memory than the full image
updates. This is a key insight when implementing differential
updates on constrained devices. In the case where multiple
files are updated (for example, the rootfs squashfs, application
squashfs, and fitImage) the differential updates become more
efficient (as only one target file is reconstructed at a time,
instead of the full partition image being downloaded), and
may even consume less memory than the full image updates,
depending on the sizes of the target and differential files.

D. Device Fleet Simulator

This experiment measures how decreasing the update file
size impacts the update distribution time across fleets of
devices. We have used an open-source network simulator, i.e.,
Fleet sImulator for Scalability Tests (FIST) [21] to perform
this experiment. FIST is an extendable network simulator that
simulates a variety of realistic IoT scenarios, including large
fleets of devices and realistic network conditions, with several
configuration options. The simulator is implemented with three
distinct components: the update manager, the network simula-
tor, and the device simulator. We use Eclipse hawkBit Update
Server v0.4.1 [22] as the update manager. Updates are sent
from the hawkBit server to the simulated devices via a network
simulator. The network simulator is implemented with Docker
Traffic Control [23], which simulates a realistic network with
the following parameters: delay - 50 ms (time that each packet
is delayed), loss - 2% (probability that a packet will be lost),
corrupt - 1% (probability of packet corruption), and duplicate -
2% (probability of packet duplication). The simulated devices
are implemented in the Go programming language [24]. Each
device runs as a goroutine, which is a lightweight execution
thread. The simulated devices implement the API required
to connect to the hawkBit update manager, as well as the
infrastructure required to receive the update file.

The simulation was run with fleet sizes of 1000, 2000, 3000,
4000, and 5000 devices.The update transmission process was
simulated with various firmware sizes. A maximum firmware
size of 70 MiB was selected and scaled down to 80%, 60%,
40%, and 20% of the maximum. Fig. 5 shows the results for
all fleet and update file sizes, with the total duration measured
in minutes. Reducing the update file size leads to a directly
proportional decrease in the total download time. For example,
reducing the update file size by 80% leads to an approximately



Fig. 5: Device Fleet Simulator Experiment Results

80% decrease in download time for all tested fleet sizes.
This linear relationship holds for all update and fleet sizes
tested in the experiment. In cases where minimizing the update
download/transmission time is important, differential updates
should be considered to reduce the update file size.

V. TOWARDS DIFFERENTIAL UPDATES FOR INDUSTRIAL
AUTOMATION SYSTEMS

In addition to the performance aspects considered in the
previous sections, implementing differential updates in indus-
trial automation systems introduces several challenges related
to ensuring update security, managing update lifecycles, and
properly applying updates. In this section, we discuss some of
the challenges that might be encountered when using differen-
tial updates in an industrial setup, future work directions, and
potential solutions.

A. Security and Robustness

Differential updates must be performed without compro-
mising the update or device security. Towards a secure and
efficient firmware update solution, section III considers the
security aspects of differential updates, with a focus on pre-
serving security while performing differential updates. This
work also provides a comparison between a differential and a
full image update, as using the SWUpdate differential handler
must not open new security vulnerabilities in the firmware up-
date process. The SWUpdate rdiff differential update handler
uses the same foundation as the raw image update handler, and
therefore shares the same security features. The update files
are signed with a private key on the server and must be verified
by a public key on the device before being installed. As well,
the individual files within the update are verified with SHA256
checksums before the update can proceed. To ensure the secure
boot process is not compromised, the external signatures of the
squashfs files must be securely updated when their associated
squashfs files are modified. In the proposed differential update
strategy, the external signature files are sent alongside the
differential files as raw files. Since the signature files are small,
there is no benefit to updating them with a differential file.
These external signatures can be securely generated during
the development process so the private keys are kept secure.

B. Applying the Correct Update

The current SWUpdate rdiff handler does not check the
version of the base file before applying the differential update.
If the wrong base file is referenced, the update will either fail
or produce an invalid file. A potential solution can use a pre-
install script, which runs before the update starts and ensures
that the firmware on the backup partition of the device matches
the firmware used to create the differential file. If the firmware
on the device does not match, the update is aborted before any
changes are made.

C. Understanding Device History

The firmware versions installed on both the active and
backup partitions must be known to transmit and apply the
correct differential update. The solution relies on a fleet
management system that is in place and allows the operator
to access information about each device, including the active
and backup firmware versions.

D. Update Lifecycle

Since differential updates must be applied to a specific
base, generating updates for a new release means creating
differentials between potentially many existing versions, lead-
ing to increased development and testing effort. Future work
might investigate a strategy to limit the effort and to prepare
differential updates between the new version and the previous
N versions. For example, assuming N = 3, if a new version,
1.16, is released, differential updates are prepared for versions
1.15, 1.14, or 1.13. If the target is version 1.12 or older, the
full update is used.

VI. RELATED WORK

The secure boot implementation presented in this paper
follows the pattern set out in [15] and the implementation in
[16]. Related work on remote updates focuses on individual
aspects of the process. [4] describes current challenges and
considerations for completing remote updates for IoT devices
and presents two possible frameworks for performing updates.
In regards to differential updates, [5] demonstrates a method
for generating minimal differential files, which is tested on
several low-powered microcontrollers. [6] presents a method
of applying minimal firmware patches to perform efficient
updates on resource-constrained devices. From a security
perspective, [8] reviews secure boot patterns for IoT devices.
[9] discusses how to use multiple layers of security both in
the update process and on the device to perform secure OTA
updates for IIoT devices. In [9], strategies are presented for
securely generating, transmitting, and applying updates, as
well as for implementing secure boot with signed firmware
on the device. In [7] a custom update manager is developed
to perform firmware updates on high-powered IoT devices.
Full firmware updates are completed on a Linux operating
system running on an IoT-connected Raspberry Pi 4. The
experimental device setup described in [7] utilizes the dual-
copy A/B root partition setup. [13] provides a framework
for implementing OTA updates with SWUpdate on RISC-V



devices. The authors integrated SWUpdate with U-Boot to test
several types of updates, including differential updates. s Our
work compliments the existing work on differential updates
but primarily focuses on the practical aspects of implementing
differential updates in a secure manner and evaluating their
performance on real devices with publicly available firmware.

VII. CONCLUSION

In this paper, we developed a differential firmware update
solution and created a prototype using an open-source em-
bedded update framework, SWUpdate. We showed how our
differential update solution can be applied to secure boot
enabled devices and discuss its security implications. We then
used our experimental setup and a device fleet simulator
to compare the performance of differential and full-image
updates. Experimental results reveal that differential updates
reduce the file size, especially for routine, minor updates. This
decrease in update file size directly correlates to a shorter
update distribution time and a faster installation process.
In certain cases, the differential updates require more disk
memory to complete than a full image update. Overall, these
key insights enable practitioners to select the IoT firmware
update strategy most suitable to each use case.
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